GizMO - A Customizable Representation Model for
Graph-Based Visualizations of Ontologies

Vitalis Wiens
TIB Leibniz Information Centre for
Science and Technology and
Fraunhofer IAIS
Hannover and St. Augustin, Germany
vitalis.wiens@gmail.com

ABSTRACT

Visualizations can support the development, exploration, commu-
nication, and sense-making of ontologies. Suitable visualizations,
however, are highly dependent on individual use cases and targeted
user groups. In this article, we present a methodology that enables
customizable definitions for the visual representation of ontologies.
The methodology describes visual representations using the
OWL annotation mechanisms and separates the visual abstraction
into two information layers. The first layer describes the graphical
appearance of OWL constructs. The second layer addresses visual
properties for conceptual elements from the ontology. Annotation
ontologies and a modular architecture enable separation of concerns
for individual information layers. Furthermore, the methodology
ensures the separation between the ontology and its visualization.
We showcase the applicability of the methodology by introduc-
ing GizMO, a representation model for graph-based visualizations
in the form of node-link diagrams. The graph visualization meta on-
tology (GizMO) provides five annotation object types that address
various aspects of the visualization (e.g., spatial positions, viewport
zoom factor, and canvas background color). The practical use of
the methodology and GizMO is shown using two applications that
indicate the variety of achievable ontology visualizations.

CCS CONCEPTS

« Human-centered computing — Visualization; « Informa-
tion systems — Web Ontology Language (OWL).

KEYWORDS

Ontology visualization; annotation ontology; customization; visual
representation; visualization framework; visual notation.

ACM Reference Format:

Vitalis Wiens, Steffen Lohmann, and Séren Auer. 2019. GizMO - A Customiz-
able Representation Model for Graph-Based Visualizations of Ontologies. In
10th International Conference on Knowledge Capture (K-CAP’19), November
19-21, 2019, Marina Del Rey, CA, USA. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3360901.3364431

Preprint

The following article has been accepted for K-Cap 2019.
After it is published, it will be found at https://doi.org/10.1145/3360901.3364431

K-CAP 19, November 19-21, 2019, Marina Del Rey, CA, USA
ACM ISBN 978-1-4503-7008-0/19/11...$15.00
https://doi.org/10.1145/3360901.3364431

Steffen Lohmann
Fraunhofer TAIS
St. Augustin, Germany
steffen.lohmann@iais.fraunhofer.de

Soren Auer
TIB Leibniz Information Centre for
Science and Technology and L3S
Research Center, Leibniz University
Hannover, Germany
auer@I3s.de

1 INTRODUCTION

Ontologies provide formal machine-readable representations for
conceptualizations of information in various domains. The develop-
ment, exploration, communication, and sense-making of ontologies
can be facilitated using visual representations [1]. Various ontol-
ogy visualization methods and tools are available, and new ones
are being developed every year. The applied methods range from
indented trees and chord diagrams to treemaps and Euler diagrams.
According to a recent survey [4], most methods and tools visual-
ize the content of ontologies using two-dimensional graph-based
representations in the form of node-link diagrams.

The challenge with most approaches, however, is grounded in
their design. On the one hand, visualization methods are created
with a particular definition for the representation model. On the
other hand, users perceive the provided visualization and build a
mental model for the interpretation of the content [16]. Ideally,
the visual representation model corresponds to the user’s mental
model. However, these match typically only in some aspects and
diverge from the user’s expectations and previous experiences with
other visualization tools. In order to satisfy the varying demands
of users and use cases, suitable visualizations require customizable
representation models.

In this article, we introduce a methodology for customizable
visualizations of ontologies. The methodology defines visual repre-
sentation models using the OWL annotation mechanisms. A set of
annotation ontologies addresses different aspects of the visualiza-
tion and enables separation of concerns. The use of owl:imports
statements enables to enrich ontologies with visual definitions for
their depiction.

We showecase the applicability of the methodology by introduc-
ing GizMO, a representation model for graph-based ontology vi-
sualizations in the form of node-link diagrams. Two applications
show the utilization of GizMO and the variety of achievable ontol-
ogy visualizations. The applications are designed to reduce textual
crafting of annotation ontologies and showcase the interoperability
of the methodology.

The remainder of this article is structured as follows: After intro-
ducing core requirements for the visual representation of ontologies
and further deepening the research challenge in Section 2, we sum-
marize related work in Section 3. Details of the methodology and
the GizMO representation model are provided in Sections 4 and 5,
followed by the presentation of the two applications in Section 6.
Finally, we conclude with an outlook on future work in Section 7.

https://doi.org/10.1145/3360901.3364431
https://doi.org/10.1145/3360901.3364431
https://doi.org/10.1145/3360901.3364431

2 MOTIVATION AND REQUIREMENTS

Visualizations provide an abstraction of information that reinforces
human cognition for the sense-making of ontologies. However, a
visual representation model has to correspond to the user’s mental
model in order to provide a suitable visualization. Thus, only flexible
and customizable visualization approaches for ontologies can fulfill
the demands of different use cases and user groups.

Without any loss of generality for the methodology, the remain-
der of this article focuses on domain ontologies and their visual
representations in the form of node-link diagrams. As illustrated in
Figure 1, the two main visual characteristics of different methods
and tools are visual appearance and spatial arrangement (i.e., the
graphical notation used to draw the ontology graph and the layout
of nodes and edges). Thus, a customizable visual representation
model needs to address the following requirements: i) provide the
customizable visual appearance of rendering elements in order to
coincide with the user’s mental model; ii) provide spatial informa-
tion and visibility status of rendering elements in order to coincide
with the user’s mental map; iii) provide the means to represent and
share the definition of visualizations.

Visual Appearance — Visual appearance of elements is de-
scribed by a visual notation that formally defines the graphical
depiction of ontology elements, such as owl:Class. Examples of
visual notations for ontologies are VOWL [8] and Graffoo [5], but
also UML is often used to represent ontologies [3], or different tool-
specific notations. Although UML has a standard visual notation,
various styles exist, such as the visual representation of ontolo-
gies with TopBraid Composer [7], a UML version of the VOWL
notation [9], or the UML mapping of the NeOn Toolkit [6].

Graph-based visualizations can be categorized into name-label-
only and nested visualizations [4]: Name-label-only visualizations
depict the elements of the ontology as individual labeled nodes
and links. Nested visualizations (e.g., UML) aggregate information
(e.g., the data properties of a class) and visualize them as a list of
attributes inside the corresponding node. Thus, in order to coincide
with the user’s mental model, a representation model has to provide
a customizable notation that defines visual characteristics and also
encodes the depiction of aggregated elements.

Spatial Information — Spatial information is essentially neces-
sary in order to preserve the mental map of users [16]. The spatial
arrangement of elements in different layouts (e.g., hierarchical trees
or circular layouts) can facilitate the organization of information
and sense-making. The preservation of a user-defined layout is
only obtainable when spatial information is attached to the do-
main ontology. The spatial information has to correspond to the
used notation in order to reconstruct the visualization correctly.
For example, nested visualizations typically do not encode spatial
information for aggregated elements. Therefore, using spatial infor-
mation of a nested visual notation in a different one can result in
an invalid spatial assignment of elements. Consequently, a visual
representation model has to provide spatial information that corre-
sponds to the used notation and the domain ontology for which it
has been created.

Glyph Specific Information - A glyph is a collection of ren-
dering primitives. For example, a glyph could be a composition of a
shape (e.g., circle) and a label text. Glyph specific information has to

Mental Model A | Mental Map A

Ontology Notation A Person View A

ex:Person a owl:Class; — ST
owl:ObjectProperty

rdfs:label "Person".
(owr:D:

Content |

=2

ex:Creative Work a owl:Class; —

rdfs:label "Creative Work".

Node
ex:knows a owl:ObjectProperty;

rdfs:label "knows;

rdfs:domain ex:Person;
rdfs:range ex:Person.

Mental Model B Mental Map B|

\ Notation B I View B
vy (m) B
owtDatatypeProperty gl - ,,_?_
ex:age a owl:DatatypeProperty; — L
rdfs:label "age" L R
rg;s:domam e;:Persun; ! (Bt pubtcsion
rdfs:range xsd:integer. | ovihing
Figure 1: Separation of concerns into notations and views.

Notations define how OWL constructs are depicted. Views
provide spatial position assignment and visibility status.

ex:publication a owl:ObjectProperty;
rdfs:label "publication”;
rdfs:domain ex:Person;
rdfs:range ex:Creative Work.

¥

address additional properties, such as the visibility status of a glyph.
With growing size and complexity of an ontology, visualizations
become harder to read due to visual clutter and information over-
load. Various ontology visualization tools address this by providing
filtering mechanisms in order to reduce the information load for
human’s limited cognitive capacity [2]. Thus, balancing the cogni-
tive load requires strategies for determining parts of the ontology
to be visualized and to be hidden.

Suitable ontology visualizations may require additional cus-
tomization for individual glyphs. An often requested feature is
the modification of visual characteristics for some elements of the
domain ontology. These could be modifications of shapes and colors
in order to highlight or group these elements in the visualization.
Also, the replacement of selected shapes and labels with icons or
images is sometimes requested. Thus, a representation model re-
quires to provide customizable visual definitions for elements of
the domain ontology.

Representation, Governance, and Management — Some of
the available tools, such as Cytoscape [13], already partially fulfill
the described requirements. However, the proposed solutions typi-
cally are restricted to a specific tool and visualization method. A
methodology that defines visual representations in the form of OWL
annotation ontologies can overcome such boundaries. Nevertheless,
such a methodology has to ensure the following criteria:

1) Reusability: The methodology should provide the means
to recreate and modify existing notations or even design
new ones in such a way that these can be shared and reused.
The methodology should provide the means to define spatial
positions for elements of the domain ontology. Additionally,
it should provide the means to customize glyph specific
information (e.g., visibility status, shape, and color).

2) Preserving the originality of the domain ontology: Our
methodology uses OWL annotation mechanisms in order
to enrich elements with information for their visual depic-
tion. However, directly attaching visual descriptions to the
domain ontology or its elements results in an unwanted so-
lution: the modification of OWL constructs and elements
of the domain ontology. Thus, the methodology should pro-
vide the means to bind meta information to elements of the
domain ontology without the need to directly modify them.

3) Separation of concerns: The separation of concerns plays
an essential role in fostering flexible visual representations.
The methodology should provide the means for the flexi-
ble exchange of specific visual properties. Our methodology
addresses different aspects of the visualization on two infor-
mation layers that are represented as annotation ontologies.
Using import statements domain ontologies are enriched
with visual definitions for their depiction.

In summary, suitable visualizations require to be in correspon-
dence with the user’s mental model in order to facilitate the in-
terpretation of the visualized content. In this article, we present a
methodology for customizable visual representations and apply it
for the design of GizMO - a representation model for graph-based
visualizations of ontologies.

3 RELATED WORK

Dudas et al. [4] provide a comprehensive recent survey of ontology
visualization methods and tools. In the following, we discuss related
work that targets the presentation of ontology information and its
customization to user needs.

Early work by Pietriga et al. [12] develops the concept of Fresnel
Lenses, a presentation vocabulary for RDF. Lenses, formats, and
CSS classes are responsible for the visualization of RDF data. The
objective of the lenses is to select the content and apply custom
orderings of the data. The formats and the CSS classes define how
the information is presented. IsaViz [10] is a related approach that
enables the definition of visual representations for ontologies based
on Graph Style Sheets (GSS) [11]. GSS are similar to CSS and use
a selector to which attributes are assigned. Cytoscape [13] is a
visualization tool that applies a similar approach in order to enable
customizable visualizations of node-link diagrams.

GSS and CSS enable the definition of styles for rendering prim-
itives. However, they do not address the spatial positioning as
required in graph-based visualization methods. Furthermore, GSS
and CSS do not operate on OWL constructs, but apply styles on
elements in the DOM tree. Also, specific requirements, such as the
distinction between name-label-only and nested visualizations, are
not supported by these languages. Thus, GSS and CSS lack capabil-
ities required for the comprehensive representation of graph-based
ontology visualizations and are not sufficient in this context.

The Web Annotation Data Model [17] defines a model for de-
scribing associations between resources. In this model, annotations
comprise of a target and a body, where the body contains additional
data that should be associated with the target resource. It provides a
standard description method for annotations to be shared between
systems. While allowing for the definition of style information as
annotations, it is designed for the general annotation of resources
and not for the visual representation of ontologies.

Most approaches define an underlying visual representation
model. However, these models are not sharable because they are
created for a specific system, tool, or visualization method. In con-
trast, our methodology defines visual representation models as
OWL ontologies. Furthermore, it separates the visual representa-
tion into two layers: a global one for general notations, and a local
one for individual customizations. These annotation ontologies for
each layer can be shared and reused between users and tools.

4 METHODOLOGY

Numerous visual representation models have been developed. How-
ever, these are typically restricted to the corresponding visualization
method and tool. In this section, we introduce a methodology that
can overcome method and tool-specific boundaries and enables cus-
tomizations for ontology visualizations. Furthermore, we provide a
more detailed discussion for individual parts of the methodology.

Ontologies are not designed with the focus of information pre-
sentation to humans [14]. They are created and shared as file repre-
sentations in various serializations (e.g., Turtle, N3, etc.), supporting
the semantics-aware exchange and processing of information. Visu-
alization methods and tools parse the textual definition and depict
the ontology accordingly to a specific visualization method. Thus,
any ontology visualization tool has a parsing mechanism and is
capable of interpreting ontologies.

Our methodology exploits the above mentioned fact and defines
visual representations in annotation ontologies that can be used with
arbitrary ontologies using owl: imports statements. Thus, a sepa-
ration of concerns is realized for the visual abstraction layer. The
visual abstraction is divided into two information layers. The first
layer provides global visual descriptions for OWL constructs. Ac-
cordingly, this layer is independent of the visualized ontology. Con-
ceptual elements will be depicted based on their type (rdf: type)
assertion to OWL constructs. The second layer provides local visual
descriptions for elements from the visualized ontology. This layer is
designed to describe additional information, such as spatial position
and visibility status. Accordingly, this layer is bound to a particular
ontology, and its visual descriptions are only valid locally for the
individual conceptual elements of the visualized ontology. In this
article, the terms mental model, global layer, and notation refer to
the definition of visual properties for OWL constructs. The terms
mental map, local layer, and view correspond to visual properties
for conceptual elements of the visualized ontology.

Inspired by the Web Annotation Data Model [17], the methodol-
ogy uses targeting properties to link representational definitions
with OWL constructs and individual elements from the visualized
ontology. Visual properties of distinct elements are organized and
instantiated in instances of type owl : NamedIndividual. All proper-
ties used in the methodology are of type owl : AnnotationProperty.
As illustrated in Figure 2, these instances link visual description to
corresponding elements. This conceptualization attaches meta in-
formation to resources without modifying them. Thus, it preserves
the originality of OWL constructs and the ontology.

Notations — Notations are designed to describe the visual de-
piction of OWL constructs on the global layer. Named individuals
provide the grouped instantiation of visual properties which are
linked to individual OWL constructs using the targeting properties.
Since annotation ontologies define visual notations, these can be
easily exchanged using adjustments of the import statements.

While domain ontologies and their graph-based representations
are in focus of this work, the methodology in itself is not restricted
to only those. Conceptualization form upper-level ontologies can
be enriched with visual descriptions in the same fashion. Various
visualization methods, such as treemaps and Euler diagrams, could
be defined when adequate notations are created and visualization
frameworks support that kind of visualization.

View Ontology

v1:localAssertion 1 rdf:type owl:NamedIndividual; jex:Person a owl:Class; ¢
... position assertion ...; rdfs:label "Person”.

.. visibility status ...;
.. glyph modifications ...;
ex:targetElement ex:Person.

—rex:Creative Work a owl:Class ;i
rdfs:label "Creative Work".

ex:knows a owl:0ObjectProperty;

vl:localAssertion_2 rdf:type owl:NamedIndividual; rdfs:label "knows;

.. position assertion ...;
.. visibility status ...;
... glyph modifications ...;
ex:targetElement ex:Creative Work.
—_—

Notation

nl:owlDatatypeProperty rd'f:type owl:NamedIndividual;
.. visual properties ...;
ex:targetElement owl:DatatypeProperty.

nl:owlObjectProperty rdf:type owﬁﬁ.ﬁﬁrﬁﬁi’dfaﬁ‘l

.. visual properties ...; |
ex:targetElement owl:0bjectProperty.

rdfs:domain ex:Person;
rdfs:range ex:Person.

ex:publication a owl:0bjectProperty;
rdfs:label "publication";
rdfs:domain ex:Person;
rdfs:range ex:Creative Work.

ex:age a owl:DatatypeProperty;
rdfs:label "age"
rdfs:domain ex:Person;
rdfs:range xsd:integer.

|
I
|
nl:owlClass rdf:type owl:NamedIndividual;

.. visual properties ...;
ex:targetElement owl:Class.

Figure 2: Organization of visual properties in instances and
indication of the target property linking conceptualization.

Views — Views are annotation ontologies that hold a set of
named individuals that target conceptual elements of the visualized
ontology. Views are designed to provide additional information,
such as the spatial position and visibility status for the targeted ele-
ments. However, the used notation is also essential to obtain valid
assertions for the position of the elements. Thus, in our methodol-
ogy, we enforce views to provide the information for which notation
they were created.

Furthermore, views provide optional modification of glyph spe-
cific information. A glyph is collection of rendering primitives (e.g.,
shape and label text) for OWL constructs. Since views encode infor-
mation about the used notations, modified glyphs can be created
by applying the visual description of the corresponding OWL con-
struct and then overwriting visual properties in correspondence
with the provided glyph modification. For example, elements from
the domain ontology can be visually highlighted and grouped by
adjustments of their visual attributes (e.g., colors, shapes, and sizes).

Containers — The design of the methodology enables the or-
chestration of notations and views. Domain ontologies can be en-
riched with metadata through the use of owl:imports (if the an-
notation ontologies are exposed under a dereferenceable URI). An-
notation ontologies for visual representations can be exchanged,
shared, reused, and adjusted for the current need of users.

Containers are ontologies that consist only of a set of imported
ontologies that correspond to the input ontology for the visualiza-
tion, notations, and views. Thus, the visual representations can be
injected into ontologies without modifying them. Disambiguation
between conceptual and visual elements in the combined model can
be realized through different namespaces and the conceptualization
of the methodology that encapsulates visual properties in instances
solely of type owl:NamedIndividual and annotation properties.

4.1 Discussion

The methodology is an abstract conceptualization for the descrip-
tion of customizable visual representations of ontologies. The cen-
tral aspect of the methodology is its utilization of OWL for defi-
nitions of visual representation models. Furthermore, it provides
conceptualizations for separation of concern in terms of annotation
ontologies.

The organization of visual properties in owl :NamedIndividuals
and the use of linking properties provide the means to enrich any
resource with description for its depiction. Thus, the full spectrum
of resources, such as OWL constructs and conceptual elements
from ontologies can be addressed.

The methodology provides no restrictions concerning which
annotation properties are grouped and instantiated in named in-
dividuals. This aspect is governed by an implementation of the
methodology, such as GizMO. Thus, the expressivity is not re-
stricted by the methodology, but rather by the implementation
and the corresponding visualization framework.

The aspect of usability should be governed by such applications
and solely be their responsibility. We argue that the corresponding
frameworks should address the variety in technological stacks. Vi-
sualization frameworks have to interpret the representation models
and create the depictions in their specific programming languages.
Since the methodology has no restrictions, it could also describe
user interactions, such as visual modifications on mouse hover-
ing or even descriptions for mouse click events. Nonetheless, the
methodology is only as viable as its realization and implementation
in visualization frameworks.

The constraints of the methodology are the use of annotation
properties for assignment of visual property values, and the use
of owl:NamedIndividuals for the grouped assignment. The iden-
tification of domain restrictions can realize the disambiguation
between conceptual and visual annotation properties. Conceptual
instances are of type owl:NamedIndividual, however, these are
additionally assigned to other OWL constructs. Thus, due to mul-
tiple type assertions, these instances belong conceptually to the
element defined in the ontology. For example:

ex:Author_1 a owl:NamedIndividual, foaf:Person .
ex:Example_1 a owl:NamedIndividual

Author_1 becomes an instance of the class Person. In contrast,
Example_1 is an instance that belongs to owl:Thing. We argue
that instances of owl:Thing and their asserted annotation proper-
ties provide a reasonable disambiguation mechanism. Such abstract
information does not provide value for the conceptualization of
ontologies. Thus, the methodology provides full coverage and dis-
ambiguation conceptualizations, while usability and expressivity
are aspects that are addressed by corresponding implementations.

5 GIZMO

GizMO is a representation model for the definition of customizable
graph-based ontology visualizations. Based on the methodology,
GizMO defines visual representations as OWL ontologies. In this
section, we provide an overview of our design decisions, our tech-
nical realization, and discuss coverage and limitation of GizMO.

5.1 Preliminaries

GizMO builds on on the following concepts:

OWL Constructs — The language constructs of RDF(S) and OWL,
e.g.,owl:Class, owl:objectProperty, rdfs:subClassOf.
GizMO Core Ontology - Set of defined annotation properties,
along with value restrictions. Besides visual properties (e.g., shape,
color, and position), it defines further annotation properties used
by the representation model.

Annotation Object — Based on the methodology, annotation prop-
erties are grouped by instances of type owl:NamedIndividual.
They provide targeting properties that link visual definitions to
corresponding elements. This conceptualization ensures the dis-
junction for the domain ontology and its visualization. Furthermore,
the use of targeting properties prevents unnecessary manipulations
of OWL constructs and conceptual elements. These named individ-
uals are extended with an additional annotation property which
defines their annotation object type. The annotation object types
enable the disambiguation of the named individuals for different
parts of the representation model. The GizMO representation model
uses five annotation object types:

e Glyph Annotation Object: Organizes the set of annota-
tion properties that address the visual appearance of OWL
constructs.

e Visualization Annotation Object: Organizes the set of
annotation properties addressing the visual representation
of conceptual elements from the domain ontology, includ-
ing their spatial position assignment, visibility status, and
optional modified glyph information.

e Triple Annotation Object: Identifies triples from the do-
main ontology and asserts the visual annotation objects for
the corresponding subject, predicate, and object element.

e Notation Annotation Object: Holds additional informa-
tion for the notation, such as a canvas background color.

e View Annotation Object: Holds additional information for
the view, such as the used notation and viewport configura-
tion (e.g., zoom factor).

Notation — Consists of a notation annotation object and a collection
of glyph annotation objects.

View — Consists of a view annotation object, a set of triple annotation
objects, and a set of visualization annotation objects.

5.2 Visual Graph Mapping

Ontology visualization methods and tools apply a mapping that
provides a formal definition for the visual representation of OWL
constructs. Graph-based visualizations, such as node-link diagrams,
represent the concepts of an ontology by a graph G(N, E), where
classes typically map to the set of nodes N and their interrela-
tions are described by the set of edges E using the terms of the
ontology. These nodes and edges have a visual component for the
graphical depiction based on the mapping. However, even for two-
dimensional graph-based visualizations, these mappings provide
deviations for nested and non-nested representations in the final
depiction of the ontology (cf. Figure 1, views A and B).

Furthermore, OWL provides constructs that can be mapped dif-
ferently (e.g., a:ClassA owl:equivalentClass b:ClassB.). One
representation could map a:ClassA and b:ClassB to nodes in the
graph, having owl:equivalentClass as an edge between the two
nodes. Another representation could merge the two classes into
one node, thus the OWL construct owl : equivalentClass does not
have a single visual component, but rather a mapping description
for the involved elements.

Some visual notations provide for OWL constructs a visual com-
ponent and a mapping description. For example, rdfs:Literalisa
resource that maps to a node that has a visual component. Thus, all

Table 1: OWL constructs and corresponding mappings cur-
rently supported by GizMO.

OWL Construct Mapping

Nodes

owl:Class Visual-component-only

owl: Thing Combination (glyph multiplication)
Links

owl:ObjectProperty Visual-component-only
owl:DatatypeProperty Visual-component-only
rdfs:subClassOf Combination (glyph multiplication)
Datatypes

rdfs:Literal Combination (glyph multiplication)
rdfs:Datatype Combination (glyph multiplication)
Other

rdfs:label Combination (label in domain node)

rdfs:domain Mapping-description-only

rdfs:range Mapping-description-only

datatype properties with this range restriction will provide an edge
to this single node. Depending on the domain ontology and its com-
plexity, such simple mapping could result in an overcrowded and
cluttered visualization. Correspondingly, node splitting or glyph
multiplications are performed by some notations.

Ontology mappings can be categorized into three groups: i)
visual-component-only creates for an OWL construct a node or
an edge; ii) mapping-description-only defines how axioms such as
owl:equivalentClass are handled; iii) combination of i) and ii).

The methodology does not employ definitions for the mapping
of OWL constructs. This design decision transfers the responsibility
of the mapping to the corresponding notation and maintains the
flexibility of the methodology for various notations.

The current conceptualization of GizMO does not support such
customizable mapping definitions. GizMO is limited to a subset of
OWL constructs and a fixed implicit mapping. Table 1 provides an
overview of support OWL constructs and their mappings.

While GizMO supports only a limited set of OWL constructs
and corresponding mappings, its conceptualization provides five
additional customizable visual elements that mitigate current con-
straints. Default elements for nodes and properties describe a visual-
component-only mapping for OWL constructs that are not sup-
ported by GizMO. Unsupported datatypes are described by a cor-
responding default element that defines their visual component
and enforces a glyph multiplication. Furthermore, GizMO provides
descriptions for collapse/expand mechanisms of multiple links be-
tween two nodes. The visual representation of collapsed links is
provided by one of the additional elements. The mappings for nested
visualizations (e.g., UML), are implicitly defined in GizMO and are
represented by a nested node description. The use of nested visual
representations is defined in the notation annotation object.

GizMO has been designed to showcase the applicability of the
methodology. Regardless of the set of supported OWL constructs
and the implicit mappings, GizMO provides already customizable
visualizations of ontologies that can be used to recreate existing
notations, such as UML and VOWL.

5.3 Technical Realization and Design Decisions

The technical realization is conceived in correspondence with the
methodology. An annotation ontology, the GizMO core ontology’,
defines annotation properties for the GizMO representation model.
This ontology provides value restrictions and comments, address-
ing purpose and usage for each annotation property. Furthermore,
it defines five annotation object types (i.e., glyph, visualization,
triple, notation, and view annotation object) for the disambiguation
of owl:NamedIndividuals. GizMO defines additionally rudimen-
tary interaction descriptions for hovering on glyphs. A subset of
annotation properties indicating their purpose is shown in Table 2.

The methodology employs separation of concerns for the rep-
resentation model. Thus, visual depictions are combinations of
the associated annotation ontologies (notations and views). The
methodology creates these associations using the import mecha-
nisms of OWL. However, defining visual representations for ontolo-
gies requires the authorship for the ontology. Whereas authors of
ontologies can explicitly import notations and views into the ontol-
ogy and publish it with the desired visualization, containers enable
to associate the domain ontology with its visual representation
if no authorship is available using the import statements for the
individually required ontologies (i.e., domain ontology, notation(s),
and view(s)).

Our technical realization builds upon the assumption that any
ontology visualization tool has a parsing mechanism. Ontology
parsers, such as the OWL-AP]I, load an ontology and its import
statements into a combined model. However, in this combined
model the identification of elements from the domain ontology
(also optional other imported domain ontologies) and the resources
corresponding to the visualization is required. Since definitions for

!https://github.com/gizmo-vis/gizmo/blob/master/coreOntology/gizmoCore.ttl

Table 2: Subset of GizMO annotation properties.

GizMO property Description

Linking Properties

targetElement Linking visual properties to OWL con-
structs.

subjectElement, Graph triple pattern definition.

predicateElement,

objectElement

subjectDescription, Definition of visual properties for corre-

predicateDescription, sponding rendering primitives in views.

objectDescription

Visual Properties

renderingType Specification of geometric shapes.

width, height, radius Specification of geometric shape charac-
teristics.

bgColor, strokeElement, Specification of visual property charac-

strokeWidth teristics.

position_x, position_y, Spatial information and visibility status.

visible

Annotation Objects

annotationObjectDescription Description for its purpose.

isTypeOf Specification into glyph, visualization,
triple, notation, and view annotation ob-
ject.

owl:Class

vowl:owlClass rdf:type owl:NamedIndividual;
gizmo:renderingType "circle"~"xsd:string;
gizmo:bgColor "#aaccff"~ " xsd:string;
gizmo:radius "5 ~xsd:positivelInteger;
gizmo:strokeElement "tru ~xsd:boolean;
gizmo:strokeStyle "solid"
gizmo:strokeWidth "2"~~xsd:positivelnteger;
gizmo:strokeColor "#000000" " xsd:string; nd
gizmo:fontFamily "Helvetica,Arial,sans-serif"~"xsd:string;
gizmo:fontColor "#000000"""xsd:string;
gizmo:fontSize "12px"~xsd:string;
gizmo:hoverInCursor "pointer"~"xsd:string;
gizmo:hoverInColor "#ff0000""~"xsd:string;
gizmo:isTypeOf gizmo:GlyphAnnotationObject;
gizmo:targetElement owl:Class .

Figure 3: Named individual for visualization of owl:Class.

visual depiction are grouped in named individuals that use the anno-
tation properties of the GizMO core ontology, our implementation
uses its namespace to distinguish between conceptual and visual
elements. The disambiguation between named individuals of the
different annotation ontologies is provided by their namespaces and
the annotation object types, e.g., the glyph annotation object type
corresponds to a named individual of a notation. Figures 3 and 4
show examples of instantiated named individuals for notations and
views in the GizMO representation model.

Since OWL does not provide a conceptualization of an “annota-

tion object” that groups annotation properties, our realization of
the GizMO uses a simplified assertion of visual properties, such as
xsd: datatypes. Visual properties are annotation properties that
are grouped in instances solely of the type owl:NamedIndividual.
Thus, instances for the visualizations become automatically in-
stances of owl:Thing, which are on a higher abstraction layer in
comparison to elements from the domain ontology. Such simplified
assertion has a practical advantage: GizMO does not introduce a
single class. This has the benefit that our representation model will
not conflict with other visualization tools. For example, the class
tree of Protégé will not be cluttered with elements that correspond
to the visualization.
Views — Views require more refined considerations of the linking
property approach. Definitions of domain ontologies use OWL con-
structs, such as rdfs:Literal, rdfs:subClassOf, etc., multiple
times. As discussed in Section 5.2, these are typically represented as
multiple glyphs. Since multiple glyphs correspond to a single OWL
construct, a bijective mapping using only a single linking property
is not possible (cf. Figure 4).

GizMO solves this challenge through the use of multiple link-
ing properties in the triple annotation object. Any ontology can
be serialized in a triple format (e.g., N3), such that it consists of a
set of subject, predicate, and object triples. Since OWL uses URIs
for resource descriptions, a triple itself is unique. A triple anno-
tation object provides three distinct linking properties for sub-
ject, predicate, and object. Three additional linking properties (e.g.,
gizmo:subjectDescription) point to visualization annotation ob-
Jjects. These provide the assigned values for their spatial position,
visibility status, and optional glyph modification information. Thus,
a unique assertion is ensured, even for multiple uses of identical
OWL constructs. Figure 4 shows the definition of two triple annota-
tion objects and their corresponding visualization annotation objects
that define positions and glyph modifications.

https://github.com/gizmo-vis/gizmo/blob/master/coreOntology/gizmoCore.ttl

###--- Triple Definitions ---###
view_0:tripleObject_0 rdf:type owl:NamedIndividual;
gizmo:isTypeOf gizmo:TripleAnnotationObject;

gizmo: subjectElement ex:Person;
gizmo:predicateElement ex:firsthame;
gizmo:objectElement rdfs:Literal;
gizmo:subjectDescription view_0:element_c1;
gizmo:predicateDescription view_0:element_pi;
gizmo:objectDescription view_0:element_di .

###--- (first name) ---###

view_0:element_p1 rdf:type owl:NamedIndividual;
gizmo:postion_x "1235.16"AMxsd:double;
gizmo:postion_y "554.06"Axsd:double;
gizmo:visible "true"Arxsd:boolean;

Customization #i#
gizmo:bgColor "#4891c8"AMxsd:string;

gizmo:isTypeOf gizmo:VisualizationAnnotationobject |

###--- (Literal 1) ---###
view_0:element_d1 rdf:type owl:NamedIndividual;
gizmo:postion_x "1321.26"Axsd: double;
gizmo:postion_y "542.38"AAxsd:double;
gizmo:visible "true"AAxsd:boolean;
###Customization ###
gizmo:bgColor "#4891c8"Axsd:string;
gizmo:isTypeOf gizmo:VisualizationAnnotationObject .

view_0:tripledbject_1 rdf:type owl:NamedIndividuali| [(Person) ---###

gizmo: isTypeOf gizmo:TripleAnnotationobject; view 0:element_c1 rdf:type owl:NamedIndividual;
gizmo:subjectElement ex:Person; gizmo:postion_x "1130.66"AAxsd: double;
gizmo:predicateElement ex:lastName; Bizmo:postion y "572.14"Arxsd:doubles

gizmo: objectElement rdfs:Literal; gizmo:visible " "true"AAxsd:boolean;
gizmo:subjectDescription view_0:element_c1; A
gizmo: predicateDescription view_0:element p2;
gizmo:objectDescription view 0:element_d2

gizmo:isTypeOf gizmo:VisualizationAnnotationObject .

###--- (last name) ---###
view_0:element_p2 rdf:type owl:NamedIndividual;
gizmo:postion_x "1236.61"Mxsd: double;
gizmo:postion_y "586.24"ANxsd:double;
gizmo:visible "true"AAxsd:boolean;
gizmo:isTypeof gizmo:VisualizationAnnotationObject

###--- (Literal 2) ---###

view_0:element_d2 rdf:type owl:NamedIndividual;
gizmo:postion_x "1323.91"AAxsd:double;
gizmo:postion_y "595.38"Axsd:double;
gizmo:visible “true"AAxsd:boolean;

Customization

gizmo:bglolor "#99cc66"Axsd:string;
gizmo:isTypeof gizmo:VisualizationAnnotationobject .

Figure 4: Disambiguation for glyph specific information with additional glyph modifications for some objects (e.g., first name).

6 IMPLEMENTATION

The utilization of the methodology, however, can only be achieved
when tools and frameworks are extended towards the interpretation
of annotation ontologies that define visual representation models.
In the following, we briefly describe two applications? that are
operating on the GizMO representation model.

Both applications use the same rendering engine and partially im-
plement the semantic zooming approach for ontology graphs [15].
These applications use an implicit mapping for a defined subset of
OWL constructs and default elements for not mapped elements. Fur-
thermore, the collapse/expand mechanisms for datatypes, datatype
properties, and object properties are used to describe nested node
visualizations. Whereas the semantic zooming approach removes
collapsed elements from the visualization, our frameworks render
the collapsed elements with their visual descriptions inside the
corresponding node. Notations specify the collapse/expand state
globally in the notation annotation object.

Notation Editor — The notation editor? is designed to remove
the textual crafting of notations. It enables users to visually cre-
ate definitions for the representations of OWL constructs in a
WYSIWYG manner. Implemented as a proof of concept prototype,
the usability, richness of features, and user experience are not in
focus. Created notations are exported as annotations ontologies
and can be shared, reused, and integrated using owl: imports state-
ments.

Visualization Framework — The framework* is designed for
the visualization of ontologies with the GizMO representation
model. Additionally, it provides the means to create views and con-
tainers. Domain ontologies (also containers) and notations can be
loaded independently. The visualization framework has a data pro-
cessing pipeline and a visualization pipeline. The data processing
pipeline reads an ontology and organizes the comprised informa-
tion into domain ontology, notations, and views (if available). In the
case of missing notations and views, the default notation is used,
and the spatial arrangement is created automatically.

The visualization pipeline receives the processed data and cre-
ates customizable glyph objects for the elements from the domain
ontology. These glyph objects are initialized with a default no-
tation. Based on the loaded notation, these are overwritten with
the definition asserted in the glyph annotation objects. The visu-
alization pipeline then continues with view definitions. Based on
the loaded view, the information for the position, visibility status,

?Landing Page: https://gizmo-vis.github.io/gizmo/
3Notation Editor: https://gizmo-vis.github.io/gizmo/notationEditor/
4Visualization Framework: https://gizmo-vis.github.io/gizmo/visualizationFramework/

VOWL notation UML notation

Sapctans of

[Se==}
—

D @ <

Private Taggng

Figure 5: Examples created with GizMO, realizing VOWL,
UML, and custom notations.

and optional glyph modifications are updated in the correspond-
ing glyphs. Additionally, the view annotation object asserts the
viewport configuration (e.g., zoom factor).

The current implementation employs only a force-directed lay-
out algorithm. Other layout algorithms pose an implementation
effort and are not contributing to the general aspect of this work.
However, users have the option to pause the force-directed lay-
out process, manually align the layout and save it as a view. The
pause/play state of the force-directed layout is saved in the view
annotation object. Descriptions for the usage and features of the
framework can be found on the corresponding landing page?.

7 CONCLUSION

Visualizations of ontologies can support the development, explo-
ration, communication, and sense-making. However, suitable visu-
alizations are highly dependent on individual use cases and targeted
user groups. Flexible and customizable approaches are required in
order to allow users to adjust visual representations to their needs.

In this work, we have presented a methodology for customiz-
able visual representations of ontologies. The central aspect of the
methodology is its utilization of OWL for definitions of visual repre-
sentation models. The methodology separates the visual abstraction
into two layers: The global layer reflects the mental model of users
and addresses the customizable visual representation of OWL con-
structs. The local layer addresses the mental map of users and
provides the means to customize the spatial arrangement, visibility
status, and optional glyph modifications.

https://gizmo-vis.github.io/gizmo/
https://gizmo-vis.github.io/gizmo/notationEditor/
https://gizmo-vis.github.io/gizmo/visualizationFramework/

The applicability of the methodology is demonstrated through
GizMO, a representation model for graph-based visualizations of
ontologies. The GizMO core ontology defines annotation properties
for visual attributes (e.g., shapes, colors, positions, etc.). Annotation
objects provide grouped instantiations of values that are linked to
OWL constructs and elements of the domain ontology. Different
types of annotation objects target various aspects of the visualiza-
tion. These provide a conceptual separation between the global and
local layers for the visual representation.

Through the use case of GizMO, we show that the customizable
visual mapping of OWL constructs poses a particular challenge.
GizMO implements a fixed implicit mapping for OWL constructs in
the context of a minimal viable product (MVP) prototype. However,
customizable visual representation models have to provide defini-
tions for the mapping of OWL constructs. For example, the merging
of nodes that are linked via the owl:equivalentClass property or
the multiplication of glyphs. Future work and refinement of GizMO
will address the customizable mapping of OWL constructs.

GizMO indicates additional requirements for the disambigua-
tion of multiplied glyphs. OWL constructs, such as rdfs:Literal,
are used multiple times. This poses the challenge for identifying
corresponding glyphs in the visualization. GizMO addresses this
challenge through the use of triple annotation objects. These iden-
tify the corresponding triples and assert for subject, predicate, and
object elements from the domain ontology the corresponding vi-
sualization annotation objects. Visualization annotations objects
define the spatial information, visibility status, and optional glyph
modifications. The visibility flag fosters the reduction of cognitive
load by excluding elements from the visualization. The optional
glyph modifications enable the customization of visual attributes
(e.g., colors and shapes) for elements of the domain ontology.

The design decisions for the methodology and the technical
realization of GizMO are conceived to facilitate the customizable
definitions for the visual representation of ontologies. The success
of the methodology and GizMO depends on the integration into
other frameworks and tools. GizMO is currently limited in its cov-
erage of OWL constructs and the implicit mapping. Some visual
representations cannot merely be described by visual appearance
and spatial arrangement of glyphs. We describe the UML-based
notations using collapsing and expanding mechanisms, whereas
other notations may require additional behavioral descriptions (e.g.,
edge bundling). Regardless of its limitations, Figure 5 illustrates the
variety of already possible visualizations.

Future work will address the refinement of the GizMO core
ontology and its coverage of OWL constructs. The customizable
mapping for OWL constructs, such as owl :equivalentClass, will
be extended in order to enable the definition for the merging of
classes into one node. GizMO is one use case of the methodology
and applies only to graph-based visualizations. The definition of
other notation types, such as treemaps or chord diagrams, using
our methodology is another topic for future work. However, only
the implementation of frameworks that can operate on the method-
ology for visual representation models will result in meaningful
and suitable visualizations of ontologies. Additionally, we plan to
add further layout algorithms and interaction mechanisms to the
framework so that it can serve as a comprehensive reference imple-
mentation for GizMO in the future.

The abstract nature of the methodology and the provided discus-
sion in Section 4.1 indicate the induced responsibility for realiza-
tions, such as GizMO. One the one hand, GizMO has been designed
in the context of an MVP, and its limitations are prevalent towards
the customizable mappings. On the other hand, the evaluation of
the usability and richness of features will result in an assessment of
the implemented visualization frameworks and not GizMO nor the
methodology. Thus, this work postpones the evaluation of GizMO
for future work.

In conclusion, we hope that the methodology will foster the
creation of custom visual representations for ontologies and be
useful to researchers, ontology engineers, and domain experts.

Acknowledgement. This work is co-funded by the European Re-
search Council project ScienceGRAPH (Grant agreement #819536).
In addition, parts of it evolved in the context of the Fraunhofer Clus-
ter of Excellence “Cognitive Internet Technologies”. Additionally
we would like to thank Maria-Esther Vidal, Mikhail Galkin, and
Christian Mader for valuable discussions, comments, suggestions,
and guidance.

REFERENCES

[1] Chaomei Chen. 2002. Visualizing the Semantic Web: XML-Based Internet and
Information Visualization. Springer.

[2] Nelson Cowan. 2000. The magical number 4 in short-term memory: A recon-
sideration of mental storage capacity. Behavioral and Brain Sciences 24 (2000),
87-185.

[3] Stephen Cranefield and Martin K. Purvis. 1999. UML as an Ontology Modelling
Language. In Intelligent Information Integration (CEUR Workshop Proceedings),
Vol. 23. CEUR-WS.org. http://ceur-ws.org/Vol-23/

[4] Marek Dudas, Steffen Lohmann, Vojtéch Svatek, and Dmitry Pavlov. 2018. Ontol-
ogy visualization methods and tools: a survey of the state of the art. Knowledge
Eng. Review 33 (2018), e10.

[5] Riccardo Falco, Aldo Gangemi, Silvio Peroni, David Shotton, and Fabio Vitali.
2014. Modelling OWL Ontologies with Graffoo. In The Semantic Web: ESWC 2014
Satellite Events (LNCS), Vol. 8798. Springer, 320-325.

[6] Peter Haase, Saartje Brockmans, Raul Palma, Jérome Euzenat, and Mathieu
d’Aquin. [n.d.]. The NeOn UML Profile for Networked Ontologies. http://neon-
project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf.

[7] Holger Knublauch. [n.d.]. Graphical Ontology Editing with TopBraid Composer’s

Diagram Tab. https://www.topquadrant.com/2012/06/29/graphical-ontology-

editing-with-topbraid-composers-diagram- tab/.

Steffen Lohmann, Stefan Negru, Florian Haag, and Thomas Ertl. 2016. Visualizing

Ontologies with VOWL. Semantic Web 7, 4 (2016), 399-419.

[9] Stefan Negru, Florian Haag, and Steffen Lohmann. 2013. Towards a unified
visual notation for OWL ontologies: insights from a comparative user study. In
I-SEMANTICS 2013 - 9th International Conference on Semantic Systems, ISEM ’13,
Graz, Austria, September 4-6, 2013. 73-80.

[10] Emmanuel Pietriga. 2003. IsaViz: A visual authoring tool for RDF. http://www.

w3.0rg/2001/11/IsaViz.

Emmanuel Pietriga. 2006. Semantic Web Data Visualization with Graph Style

Sheets. In Proceedings of the 2006 ACM Symposium on Software Visualization

(SoftVis '06). ACM, New York, NY, USA, 177-178.

Emmanuel Pietriga, Christian Bizer, David R. Karger, and Ryan Lee. 2006. Fresnel:

A Browser-Independent Presentation Vocabulary for RDF. In 5th International

Semantic Web Conference, ISWC 2006 (LNCS), Vol. 4273. Springer, 158-171.

[13] Paul Shannon, Andrew Markiel, Owen Ozier, Nitin S. Baliga, Jonathan T. Wang,
Daniel Ramage, Nada Amin, Benno Schwikowski, and Trey Ideker. 2003. Cy-
toscape: a software environment for integrated models of biomolecular interac-
tion networks. Genome research 13, 11 (2003), 2498-2504.

[14] Frank van Harmelen and Deborah McGuinness. 2004. OWL Web Ontology Lan-

guage Overview. W3C Recommendation. W3C. http://www.w3.org/TR/2004/REC-

owl-features-20040210/.

Vitalis Wiens, Steffen Lohmann, and Séren Auer. 2017. Semantic Zooming

for Ontology Graph Visualizations. In Proceedings of the Knowledge Capture

Conference, K-CAP 2017. ACM, 4:1-4:8.

[16] John R. Wilson and Andrew Rutherford. 1989. Mental models: Theory and
application in human factors. Human Factors 31, 6 (1989), 617-634.

[17] Benjamin Young, Robert Sanderson, and Paolo Ciccarese. 2017. Web Annotation
Data Model. W3C Recommendation. W3C.

=

[11

[12

[15

http://ceur-ws.org/Vol-23/
http://neon-project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf
http://neon-project.org/deliverables/WP1/NeOn_2007_D1.1.2.pdf
https://www.topquadrant.com/2012/06/29/graphical-ontology-editing-with-topbraid-composers-diagram-tab/
https://www.topquadrant.com/2012/06/29/graphical-ontology-editing-with-topbraid-composers-diagram-tab/
http://www.w3.org/2001/11/IsaViz
http://www.w3.org/2001/11/IsaViz

	Abstract
	1 Introduction
	2 Motivation and Requirements
	3 Related Work
	4 Methodology
	4.1 Discussion

	5 GizMO
	5.1 Preliminaries
	5.2 Visual Graph Mapping
	5.3 Technical Realization and Design Decisions

	6 Implementation
	7 Conclusion
	References

